Solution Chapter 4

$4.15 \mathrm{i}=0.12 / 12=1 \%$ per month
Nominal per 6 months $=0.01(6)=6 \%$
Effective per 6 months $=(1+0.06 / 6)^{6}-1$

$$
=6.15 \%
$$

4.17 $\mathrm{P}=$ weekly; $\mathrm{CP}=$ quarterly
$4.372,000,000=\mathrm{A}(\mathrm{P} / \mathrm{A}, 3 \%, 8)+50,000(\mathrm{P} / \mathrm{G}, 3 \%, 8)$
$2,000,000=\mathrm{A}(7.0197)+50,000(23.4806)$

$$
A=\$ 117,665
$$

$4.38 \mathrm{P}=1000+2000(\mathrm{P} / \mathrm{A}, 1.5 \%, 12)+3000(\mathrm{P} / \mathrm{A}, 1.5 \%, 16)(\mathrm{P} / \mathrm{F}, 1.5 \%, 12)$

$$
\begin{aligned}
& =1000+2000(10.9075)+3000(14.1313)(0.8364) \\
& =\$ 58,273
\end{aligned}
$$

4.42 Move withdrawals to beginning of periods and deposits to end; then find F .
$\mathrm{F}=1600(\mathrm{~F} / \mathrm{P}, 4 \%, 5)+1400(\mathrm{~F} / \mathrm{P}, 4 \%, 4)-2600(\mathrm{~F} / \mathrm{P}, 4 \%, 3)+1000(\mathrm{~F} / \mathrm{P}, 4 \%, 2)$
$-1000(\mathrm{~F} / \mathrm{P}, 4 \%, 1)$
$=1600(1.2167)+1400(1.1699)-2600(1.1249)+1000(1.0816)-1000(1.04)$
= \$701.44
$4.46 \quad 0.127=e^{r}-1$
$\mathrm{r} / \mathrm{yr}=11.96 \%$
$r /$ quarter $=2.99 \%$
4.55 (a) First move cash flow in years 04 to year 4 at $\mathrm{i}=12 \%$.

$$
\begin{aligned}
\mathrm{F} & =5000(\mathrm{~F} / \mathrm{P}, 12 \%, 4)+6000(\mathrm{~F} / \mathrm{A}, 12 \%, 4) \\
& =5000(1.5735)+6000(4.7793) \\
& =\$ 36,543
\end{aligned}
$$

Now move the total to year 5 at $\mathrm{i}=20 \%$.

$$
\begin{aligned}
\mathrm{F} & =36,543(\mathrm{~F} / \mathrm{P}, 20 \%, 1)+9000 \\
& =36,543(1.20)+9000 \\
& =\$ 52,852
\end{aligned}
$$

(b) Substitute A values for annual cash flows, including year 5 with the factor (F/P,20\%,0) $=1.00$

$$
\begin{aligned}
52,852 & =\mathrm{A}\{[(\mathrm{~F} / \mathrm{P}, 12 \%, 4)+(\mathrm{F} / \mathrm{A}, 12 \%, 4)](\mathrm{F} / \mathrm{P}, 20 \%, 1)+(\mathrm{F} / \mathrm{P}, 20 \%, 0)\} \\
& =\mathrm{A}\{[(1.5735)+(4.7793)](1.20)+1.00\} \\
& =\mathrm{A}(8.62336)
\end{aligned}
$$

$$
\mathrm{A}=\$ 6129 \text { per year for years } 0 \text { through } 5 \text { (a total of } 6 \mathrm{~A} \text { values). }
$$

